48 research outputs found

    The Role Of Genetic And Phenotypic Variation In The Colonization Biology Of The Weedy Nightshade, Solanum Ptycanthum Dun

    Get PDF
    Solanum ptycanthum (eastern black nightshade) is a serious weed of tomato and soybean crops at the northern margin of its distribution in southwestern Ontario. Evidence for direct immigration, albeit at low, sporadic frequencies, of nightshade into these agrestal habitats occurs via tomato transplants imported from Georgia and North Carolina. Northern ruderal populations are also common in a variety of natural habitats. Outcrossing rates in northern and southern genotypes were compared in simulated populations grown in northern agricultural habitats. Greenhouse experiments were used to examine levels of genetic variation and phenotypic plasticity in life history traits among ruderal, agrestal and southern populations in response to abiotic factors which would be experienced when invading northern agroecosystems.;Genotypes from recently colonized northern populations (both agrestal and ruderal) had lower outcrossing rates ({dollar}\u3c{dollar}3%) than those originating from the south (3-17%).;Northern agrestal populations were not less genetically variable, and did not express greater phenotypic plasticity than northern ruderal or southern agrestal populations under a wide range of greenhouse conditions. Germination speed was greater, and the number of degree days to reach 50% germination was less in ruderal families, suggesting that ruderal populations would emerge earlier than agrestal populations. The germination response to temperature was similar between northern and southern agrestal populations, suggesting that these populations would emerge synchronously.;Ruderal and northern agrestal populations were equally tolerant to low doses of metribuzin, while populations originating from Georgia were extremely susceptible to both levels of metribuzin tested. North Carolina seedlings were as tolerant as northern agrestal populations. Northern agrestal populations were more tolerant than ruderal populations at the highest dose of metribuzin.;There was no divergence in the phenotype expressed by ruderal and northern agrestal individuals in response to variation in nutrients. There was no evidence for selection for increased yield response in agrestals grown under high nutrient conditions. However, delayed reproduction of southern compared to northern plants may limit the production of viable seed in northern short-season crops. Developmental pattern and age to first reproduction were canalized within southern populations, suggesting lack of sufficient genetic variability to respond to selection encountered during colonization of northern agroecosystems

    Profiling Regional Watershed Management on the Northeast Avalon: Integrating Practices for Drinking Water Quality

    Get PDF
    This study investigated watershed management in the Northeast Avalon (NEA) region and six targeted municipalities by 1) mapping watershed boundaries and intactness to inform water and wetland management; and 2) understanding the issues around drinking water in each municipality. Residents, planners, developers and municipal staff were interviewed. Many of the watersheds have experienced significant development resulting in a loss of watershed health; few areas have large intact areas remaining. As larger watersheds are shared among municipalities, it is imperative that a planning platform be developed to engage and promote regional planning to ensure watershed health and sustainable drinking water into the future. Mechanisms that encourage as well as discourage regional collaboration around issues of watershed management are outlined

    The effect of clone size on seed production in Canada goldenrod, Solidago canadensis L.

    Get PDF
    Source: Masters Abstracts International, Volume: 40-07, page: . Thesis (M.Sc.)--University of Windsor (Canada), 1981

    Tree spatial pattern within the forest–tundra ecotone: a comparison of sites across Canada

    Get PDF
    Accepted VersionAlthough many studies have focused on factors influencing treeline advance with climate change, less consideration has been given to potential changes in tree spatial pattern across the forest–tundra ecotone. We investigated trends in spatial pattern across the forest–tundra ecotone and geographical variation in the Yukon, Manitoba, and Labrador, Canada. Tree cover was measured in contiguous quadrats along transects up to 100 m long located in Forest, Ecotone, and Tundra sections across the forest–tundra transition. Spatial patterns were analyzed using new local variance to estimate patch size and wavelet analysis to determine the scale and amount of aggregation. Compared with the Forest, tree cover in the Ecotone was less aggregated at most sites, with fewer smaller patches of trees. We found evidence that shorter trees may be clumped at some sites, perhaps due to shelter from the wind, and we found little support for regular spacing that would indicate competition. With climate change, trees in the Ecotone will likely become more aggregated as patches enlarge and new patches establish. However, results were site-specific, varying with aspect and the presence of krummholz (stunted trees); therefore, strategies for adaptation of communities to climate change in Canada’s subarctic forest would need to reflect these differences

    Airborne laser scanning reveals uniform responses of forest structure to moose (Alces alces) across the boreal forest biome

    Get PDF
    1. The moose Alces alces is the largest herbivore in the boreal forest biome, where it can have dramatic impacts on ecosystem structure and dynamics. Despite the importance of the boreal forest biome in global carbon cycling, the impacts of moose have only been studied in disparate regional exclosure experiments, leading to calls for common analyses across a biome-wide network of moose exclosures. 2. In this study, we use airborne laser scanning (ALS) to analyse forest canopy re-sponses to moose across 100 paired exclosure-control experimental plots dis-tributed across the boreal biome, including sites in the United States (Isle Royale), Canada (Quebec, Newfoundland), Norway, Sweden and Finland. 3. We test the hypotheses that canopy height, vertical complexity and above- ground biomass (AGB) are all reduced by moose and that the impacts vary with moose density, productivity, temperature and pulse disturbances such as logging and insect outbreaks. 4. We find a surprising convergence in forest canopy response to moose. Moose had negative impacts on canopy height, complexity and AGB as expected. The responses of canopy complexity and AGB were consistent across regions and did not vary along environmental gradients. The difference in canopy height be-tween exclosures and open plots was on average 6 cm per year since the start of exclosure treatment (±2.1 SD). This rate increased with temperature, but only when moose density was high. 5. The difference in AGB between moose exclosures and open plots was 0.306 Mg ha−1 year−1 (±0.079). In browsed plots, stand AGB was 32% of that in the exclosures, a difference of 2.09 Mg ha−1. The uniform response allows scaling of the estimate to a biome-wide impact of moose of the loss of 448 (±115) Tg per year, or 224 Tg of carbon. 6. Synthesis: Analysis of ALS data from distributed exclosure experiments identified a largely uniform response of forest canopies to moose across regions, facilitat-ing scaling of moose impacts across the whole biome. This is an important step towards incorporating the effect of the largest boreal herbivore on the carbon cycling of one of the world's largest terrestrial biomes.publishedVersio

    Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    Get PDF
    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming

    Reproduction as a bottleneck to treeline advance across the circumarctic forest tundra ecotone

    Get PDF
    Published versionThe fundamental niche of many species is shifting with climate change, especially in sub-arctic ecosystems with pronounced recent warming. Ongoing warming in sub-arctic regions should lessen environmental constraints on tree growth and reproduction, leading to increased success of trees colonizing tundra. Nevertheless, variable responses of treeline ecotones have been documented in association with warming temperatures. One explanation for time lags between increasingly favourable environmental conditions and treeline ecotone movement is reproductive limitations caused by low seed availability. Our objective was to assess the reproductive constraints of the dominant tree species at the treeline ecotone in the circumpolar north. We sampled reproductive structures of trees (cones and catkins) and stand attributes across circumarctic treeline ecotones. We used generalized linear mixed models to estimate the sensitivity of seed production and the availability of viable seed to regional climate, stand structure, and species-specific characteristics. Both seed production and viability of available seed were strongly driven by specific, sequential seasonal climatic conditions, but in different ways. Seed production was greatest when growing seasons with more growing degree days coincided with years with high precipitation. Two consecutive years with more growing degree days and low precipitation resulted in low seed production. Seasonal climate effects on the viability of available seed depended on the physical characteristics of the reproductive structures. Large-coned and -seeded species take more time to develop mature embryos and were therefore more sensitive to increases in growing degree days in the year of flowering and embryo development. Our findings suggest that both moisture stress and abbreviated growing seasons can have a notable negative influence on the production and viability of available seed at treeline. Our synthesis revealed that constraints on pre-dispersal reproduction within the treeline ecotone might create a considerable time lag for range expansion of tree populations into tundra ecosystems

    Plant traits poorly predict winner and loser shrub species in a warming tundra biome

    Full text link
    Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces

    Climate sensitivity of shrub growth across the tundra biome

    Get PDF
    The tundra biome is experiencing rapid temperature increases that have been linked to a shift in tundra vegetation composition towards greater shrub dominance. Shrub expansion can amplify warming by altering the surface albedo, energy and water balance, and permafrost temperatures. To account for these feedbacks, global climate models must include realistic projections of vegetation dynamics, and in particular tundra shrub expansion, yet the mechanisms driving shrub expansion remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual growth of shrub species provide a previously untapped resource to explore climate-growth relationships across the tundra biome. We analysed a dataset of approximately 42,000 annual growth records from 1821 individuals, comprising 25 species from eight genera, from 37 arctic and alpine sites. Our analyses demonstrate that the sensitivity of shrub growth to climate was (1) heterogeneous across the tundra biome, (2) greater at sites with higher soil moisture and (3) strongest for taller shrub species growing at the northern or upper elevational edge of their range. Across latitudinal gradients in the Arctic, climate sensitivity of growth was greatest at the boundary between low- and high-arctic vegetation zones, where permafrost conditions are changing and the majority of the global permafrost soil carbon pool is stored. Thus, in order to more accurately estimate feedbacks among shrub change, albedo, permafrost thaw, carbon storage and climate, the observed variation in climate-growth relationships of shrub species across the tundra biome will need to be incorporated into earth system models.JRC.H.3-Forest Resources and Climat
    corecore